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1. INTRODUCTION AND DDESCRIPTION OF B-SPLINES

Among the various classes of splincs, thc polynomial splinc has been
received the greatest attention primarly because it admits a basis of B-
splines which can be accurately and efficiently computed. Recently it has
been shown that trigonometric and hyperbolic splines also admit B-spline
bases (['1, 2]).

The object of the present paper is to give B-spline bases for hyperbolic
and trigonometric splines which are little different from the hyperbolic and
trigonometric oncs in [ 1, 27]. Throughout this paper, we assume that m is a
natural number and / is a positive parameter. First we consider a scquence
{d,,;} defined by

dm,jde_l’j—l-dm 1,7 1 dm,ozdm,mzl (m=3)
dm,j=0 (j< —1 andj>m+1) (1])
dro=1, d,=2cosh A, dy,=1.

By a simple calculation, we have
. m
gl_rgdm,j=<j>. (1.2)

Now, by making use of the constant d,, ;, we may define a hyperbolic B-
spline Q,,, . ; of degree m:
for m odd:

m--1

O 1ix)= Y (=1)d,,, 1 (1/A")[sinh A(x— j)

f 2 (v — 7 mo 2

S Ax ),
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for m even:
O i) =S (= 1Yy, 1 (1/A) [cosh Hx—J),
j=0
{’:°(x_j)+ }m_2
1o AT ] (14)

Here we shall prove that the hyperbolic B-spline Q,, . ; ; is characterized
by a convolution process of an exponential function ¢, and a characteristic
function y on [0, 1), where

d(x)=e”™ (0<x<1) and O (otherwise)

(1.5)
2x)=1 0<gx<1) and 0 {otherwise).
THEOREM 1.
O 1,0y =(*x® - *x*¢, ¢ . ;)(x) (1.6)
m—1

where * means the convolution of two functions, i.e.,
()0 =] f(0) glx—1)dr.

Proof. By the definition of d,, ;, we have

,J?

O 1,:(6) = Qo 3(%) — @ a(x — 1), (1.7)

Since Q,,. 1 ,(0)=0, from above we obtain

Onersl)= [ Quitt)de=[ (1) Quilx—1)

(1.8)
= ((*Qma)(x) = = (> ** Qs ) (%)
m—1

By a simple calculation, we have

AQ, ;(x)=sinh ix . —cosh Asinh Ai(x —1)

+sinh A(x—2),

_{sinh/lx ‘ (0<x<1)
T lsinhA2—-x) (1<x<2)
=Mg*g. 1)(x). (1.9)

This completes the proof of Theorem 1.

640/47/2-3
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Next we shall give a trigonometric B-spline §,,,,, by replacing the
parameter A in the definition of the hyperbolic B-spline Q,, ., by id (i=
=1}

for m odd:

Orrsra(6) = (=100 1y, L q1/am) [sin A=),
=0

J

(1.10)
for m even:
O 1al0)= (=10 S (=1 Ty (113 [cos A=),
e (1) (/2)m 42 {l(x_j)+}m_2:l
— 1= = (=) )W
(1.11)

where {d,, ,} is defined by the same recursion formula (1.1) with 2 cos 4 in
the definition of d, ,.
Similarly as in the hyperbolic B-spline, we have:

THEOREM 2.
0, 12(X)= (%1% *1*Qu*d_u)(x), (1.12)
m—1
where
($in*¢ ;) (x) =sin Ax/A (0<x<1) (L13)

=sind2—x)/A  (1<x<2).

By making use of Theorems | and 2, we may easily have the properties
of these hyperbolic and trigonometric B-splines similar to those of the
polynomial ones ([3]). In addition, we have the following theorems that

o)

imply 1, x,..., X" 2, cosh Ax and sinh Ax e Span{Q,, , 1;(x — /) };2 _-

THEOREM 3. For m=2,

1, Xy x7 2 eSpan{Q,, . 14(x - N} . (1.14)
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Proof. By the definition of the characteristic function, we have

Y yx—j)=1 (1.15)
J== oo

A successive convolution of this partition of unity and ..., x, ¢, and ¢ _;
yields

_Z Qi 1,a(x—=J) =A% * - *y*d, %o, )(x)

S m- 2

= {sinh(} 2)/( 1)}? {m=>=2). {1.16)
In addition, since j— (j—1)=1, from above we have
{sinh(3 2)/(57)}?

= Y Qnordr D)= % G Qi iix— )

oc

= Z j{Qm+1,ft(x_j)_Qm§I,i.(x—jv.l)}

j= -
= Y JOmiai(x—)). (1.17)
J=

Integration of the above equation from 0 to x gives

J

Z ‘ ij+z,z(x“j)_ Z JQms2(—J)

— {sinh(} £)/(} £))}2x (118)

where

Y Quizil—))
Jj=-
= ~A{Qmi2:(1) 4200 42:2)+ - + (m+1) 0, 0s(m+ 1)}
= —(3m+1){sinh(} 2)/(3 1) }* (1.19)
During the above computation, we used

Qi 2:)=0Qpin(m~+2—j)
(1.20)

S Qs 2ilx—j)={sinh(} )/ 2)}>

j=—

RAN/AT Y 1*
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Thus we have for m>=2
Y. (+im+1)Qppai(x—j)= {sinh(} 1)/(} 1) }’x
Jj= —o
ie.,
xespan{Qm+l,l('x—j)}joo= —0 (for m23)'
By making use of a simple identity:
k=2 k-1 k=1
kI G+p=11 G+p - 1] G+p-1)
p=0 p=0 p=0
ie.,
j=0+1)j-ji—-1)
3+ =0+ +1D)j-0U+1)j(j-1)
inductively we have the desired result.

THEOREM 4. For m=2,

S Q,(c—j) cosh A(j+}m)

j=—wo

=[{(2/4) sinh £ A} cosh £ 4] cosh Ax

S Q0 —j)sinh A(j+m)

j=—w

= [{(2/A) sinh { A} 3cosh i 1] sinh Ax.

(1.21)

(1.22)

(1.23)

(1.24)

Proof. For m=2, by an elementary computation we have the above
relations. Multiplying the first relation by 2 sinh 4 A, we have for m>3

Y Qmiralx—j)sinh A{j+5(m+1)}
Jj=—c0
= {(2/A)sinh £ A}~ 3 2 sinh 1 J cos 4 1 cosh Ax
where

Qi 11(%)= Qs (x) — Qpa(x—1).

(1.25)
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Integration of the above equation from 0 to x yields

S Qi rs(r—J)sinh AL+ Hm+ 1)} +c

j= oo

= {(2/4)sinh { 1} 2cosh i j sinh /x. (1.26)
2

Here we shall prove the above constant ¢ to be zero. By Theorem 1, we
obtain

Q1) =] O i) Ulx—1 (127)
where

O 1) = ("% *x)x),

R Ve,
m—1

ie, Q,, ; is the polynomial B-spline of degree m—2, and Y(x)=
(¢,%¢ . ;)(x). From (1.27), by a simple calculation we get
(D*—=3%) Qs 1(X)=0p_1(x)—2cosh i Q, ,,(x—1)
+0,_1.(x—2) (m=3). (1.28)

Operating the differential operator (D? — A2) to the both sides of (1.26), we
have

i [sinh A{(j+ 3(m+ 1)}

j —2cosh Asinh A{(j—1+im+ 1)}
+sinh A{(j—2+¥m+1)}]
xQ,, 1a(x—j)—cA*=0. (1.29)
Since the coefficient of Q,, , ;(x — j) is identically zero, we have the desired
second relation with m replaced by m+ 1. Similarly we have the first

relatign with m+ 1 from the second with m.
For Q,,,,.,(x), we have
Y. Omiralx—i)= {sind 2)/G4)}> (m>2) (1.30)

j=

from which follows

teSpan{Q, . i, (x—N}2 o  (m=2)
for A#£2kn (k=1,2,.). (1.313
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In addition, as in the proof of Theorem 3 we have

X, xz""’ xm¥2 € Span{Qm+ l,i(x _]) }sz —©

forA#£2kn  (k=1,2,..). (1.32)

For 0,,,(x) (m>2), we have

Y Bpilx—J)cos ifj+4m)

Jj=—c

=[{(2/A)sin{ 1}" *cos 1 1] cos Ax

. (1.33)
Y Ol —j)sin A(j+4m)
j= —0
=[{(2/A)sin$ A} >cos 4 4] sin Ax
from which follows
cos Ax and sin Ax € Span{Q,, ,(x — )} _ (m=2)
foriztkn  (k=1,2,.) (1.34)

2. AN APPLICATION OF A HYPERBOLIC SPLINE OF DEGREE 4
TO A NUMERICAL SOLUTION OF A SIMPLE PERTURBATION PROBLEM

We are concerned with numerical solution of a simple singular pertur-
bation problem:

ey (x)—ylx)=glx)  (0<x<1) (2.1)

y0)y=a,  y(1)=p (22)

with 0 <e<1.

Miller has proposed and proved the convergence, uniformly in ¢, of the
difference scheme:

{ 2 V=t
sinh(1 1) h? S

(1<j<n—1) (23)

yo=0  y,=f with Ai=h//e (2.4)

where for a natural number 1, = 1/n and g, = g(jh).
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Now, by making use of the hyperbolic B-spline Qs ; of degree 4 we con-
sider a spline function of the form

no-1

s¥)= Y %0s,0h—j),  i=hec (2.5)
=
with undetermined coefficients (o _4, & 3,.., &, ). The above s(x) will be
an approximate solution if it satisfies

es] —8,=g; (I<jg<n-1) (2.6}

So =2, s,=p. (2.7)

In order to transform the above collocation method (2.6)-(2.7) to a dif-
ference method, we shall require the following consistency relation
obtained by use of the similar technique for the polynomial spline:

(#) h *(ay45; + 538+ 255, 1+ 852182) (28)

” L o ”
= (40,45_/ 1+ ao3S; F a8+ ao,15j+2)

where a, ;= Q%¥)(j) (1<k<3).

Since Q¥)(j)=0%(5—)) (k=0,2), the above relation (#) at con-
secutive four mesh points is reduced to a short term relation at consccutive
three mesh points, by making an alternating sum of (#) obtained by
writing down (# ), subtracting (#) with j replaced by j+ 1, adding (#)
with j replaced by j+ 2 and so on. That is,

b 2u(A)(s; 1 —2s;+s; )

=+ {A) =2} 5/ 4] (29)
where
A%(cosh 2 —1)
)= s > 12. y
w2 cosh /’,a-l~—%/’,2> (2.10)

By means of this short term consistency relation, the collocation method
{2.6)-(2.7) is equivalent to a difference method:

(8j41—25,+5;,_1)
h?_
=g tWu-2)g+g. . (I<j<n-1) {2.11)
So=0,  s,=f  with p=u(h/ /). (2.12)

s u=2)s,+s; 1}
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TABLE (¢=10—4)

Observed Errors at Mesh Points in Collocation Method (2.11)-(2.12)
and Miller’s Difference Method (2.3)-(2.4)

Method Collocation Difference

x\h 1/20 1/40 1/20 1/40

0.05 0.922-5% 0.955-6 —0.301-1 —0.840-2
0.1 0.790-5 0.818-6 —0.132-2 —0.181-3
0.2 0.302-5 0.313-6 —-0.310-5 —0.120-5
0.3 —0.3.2-5 —0.313-6 —0.498-5 —0.125-5
04 —0.790-5 —0.818-6 —0.130-4 —0.367-5
0.5 —0.977-5 —0.101-5 —0.161-4 —0.404-5

* We denote 0.922x 10~ by 0.922-5, and the errors mean (exact values)— (approximate
values).

The solution of (2.1)-(2.2) would be dominated by terms of eJ—”‘/\/;, and
so in order to derive a lumped mass system of the above difference scheme
we let

(541 + &+1)+ (- +8&-1)
> (" e V) x (s;+ g,) = 2 cosh(hf /e )5, + g,).  (2.13)

Since

u(h)\/e) — 2+ 2 cosh(h/\/z) {Smh(zi)} u(h/Je),  (214)

we have a lumped mass system of (2.6)-(2.7) which is identical with the
above Miller’s difference scheme (2.3)-(2.4).

Now we consider an application of the difference scheme (2.11)—(2.12) to
a simple two point boundary value problem:

gy” — y=cos’nx +2n%e cos 2nx,  p(0)= p(1)=0. (2.15)

The exact solution is given by

—cos’nx.

)= exp((x — 1)/\/;) + exp( ——x/\/g)

- 1+exp(—1//¢)
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