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1. I"t"TRODUCTIOK A~D DESCRIPTION OF B-SPLINES

Among the various classes of splines, the polynomial spline has been
received the greatest attention primarly because it admits a basis of B
splines which can be accuratciy and efficiently computed. Recently it has
been shown that trigonometric and hyperbolic splines also admit B-spline
bases ([1, 2]).

The object of the present paper is to give B-spline bases for hyperbolic
and trigonometric splines which are little different from the hyperbolic and
trigonometric ones in [1,2]. Throughout this paper, we assume that m is a
natural number and ), is a positive parameter. First we consider a sequence
{dm,j} defined by

dm,j=dm -I,j+dm I,j I, (m~3)

dm.j=O

d2,o= 1,

(j ~ -1 and j ~ m + 1) (1.1 )

By a simple calculation, we have

lim dm,j = (~).
,.~o ]

(1.2)

Now, by making use of the constant dm,j' we may define a hyperbolic B
spline Q m + I,;' of degree m:

for m odd:

mil

Qm 1,;,(X)= L (-I)jdmI1 j1j).m)[sinh).(x-j)1
j~O

I,(X j) I
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(1.3 )
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for m even:

Qm+U(x) = ~tol (-1 )jdm+li 1/Am ) [COSh ;.(x- j)+

-1- ... p.(x- jL }m-2J. (1.4)
(m-2)!

Here we shall prove that the hyperbolic B-spline Qm + u is characterized
by a convolution process of an exponential function </J A and a characteristic
function X on [0, 1), where

</JAx)=e;'x

X(x) = 1

THEOREM 1.

(o":;;x<1)

(O,,:;;x< 1)

and

and
°
°

(otherwise)

(otherwise ).
(1.5)

(0":;; x,,:;; 1)

(1":;;x,,:;;2)

Qm + I,Ax) = (X*X* ... *X*</J;. *</J . ;J(x)---------m-I

where * means the convolution of two functions, i.e.,

(f*g)(x) = fXl f(t) g(x - t) dt.
-··00

Proof By the definition of dm,j' we have

Since Qm+ I,AO) = 0, from above we obtain

Qm+ 1,;.(X) = r
x

Qm,;(t) dt = rX(t) Qm,;.(x - t) dt
• x -- I ()

= (X*Qm,;J(x) = ... = (X*X*··· *X*Q2,;J(X).--------m-I

By a simple calculation, we have

;tQ2,Ax) = sinh A.X + - cosh ;. sinh ;.(x - 1) t

+ sinh ).(x - 2) +

{
sinh Ax

= sinh ).(2 - x)

This completes the proof of Theorem 1.

640/4712-1

(1.6)

(1.7)

(1.8 )

(1.9)
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Next we shall give a trigonometric B-spline Qm +1,1 by replacing the
parameter l in the definition of the hyperbolic B-spline Qm +1,1 by il (i =

J=l):

for m odd:

m+1 [
Qm+1,l(x) = (_I)(1/z)(m-l) j~O (-I)Jdm+l,i1/lm ) sinl(x-j)+

_ l(x _ j) _ ... _ (_l)(I/Z)(m+ I) {l(x - j)+ }m-zJ.
+ (m-2)! '

(1.10)

for m even:

(1.11)

where {dm,J is defined by the same recursion formula (1.1) with 2 cos A, in
the definition of dz,z.

Similarly as in the hyperbolic B-spline, we have:

THEOREM 2.

where

Qm + l,l(X) = (X*X* '" *X*Qil *¢ _oJ(x),
-----...-

m-I

(1.12)

(¢il *¢ _il)(X) = sin h/A

= sin A(2 - x)/A

(O:(x:(l)

(l :( x:( 2).
(1.13)

By making use of Theorems 1 and 2, we may easily have the properties
of these hyperbolic and trigonometric B-splines similar to those of the
polynomial ones ([3]). In addition, we have the following theorems that
imply 1,x,...,xm

-
Z

, coshh and sinhhESpan{Qm+I,,\(x-j)}J~_oo'

THEOREM 3. For m ~ 2,

1, x,..., xm- ZESpan{Qm+ I,,\(X - j)}~ -00' (1.14)
,
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Proof By the definition of the characteristic function, we have

00

L X(X - j) = 1.

125

(1.15)

A successive convolution of this partition of unity and x,···, x, rft;. and rft _;,
yields

00

L Qm + 1,;,(X - j) = (1 *X*X* ... *X*rft; *rft ;)(x)
~

m 2

(m ~ 2). (1.16)

In addition, since j - (j - 1) = 1, from above we have

x- 'Y..:;

= L jQm' 1"..{X- j)- L (j-·-1) Qm! 1,;,(X- j)
j~ -co j- 00

(X)

= L j{Qm+l, ..'(X-j)-Qmfl,i,(X-j-1)}

CD

= L jQ'm+2,;,(X- j).
j~ en

Integration of the above equation from 0 to x gives

00 x

L jQm + 2,;,(X - j) - L jQm + 2,;.( - j)

(1.17)

j' :x: jc..=: -00

where

ex;

L Qm+ 2,;,( - j)
j=. 00

(1.18)

= -{Qm+2,;,(1)+2Qm+2,;,(2)+'" +(m+1)Qm+2,;,(m+1)}

= -(!m+ 1){sinh(!}.)j(!).)V. (1.19)

During the above computation, we used

00

L Qm f 2,;.(X - j) = {sinh(! ;,)/(P)} 2.

j~ -00

f.AJ1!A7J1 ..•*

(1.20)
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Thus we have for m ~ 2
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i.e.,

00

L U+!m+1)Qm+2,.«x-j)={sinh(!A)/(!A)}2x (1.21)
J= -00

By making use of a simple identity:

(for m ~ 3). (1.22)

k-2 k-l k-l

k n U+ p) = n u+ p) - n u+ P - 1) (1.23 )
p~o p=o p~o

i.e.,

2j = U + 1) j - jU - 1)

3U + 1) j = U + 2)U + 1) j - U + 1) jU -1)

inductively we have the desired result.

THEOREM 4. For m ~ 2,

00

L Qm,.«x - j) cosh AU +! m)
J= -00

00

L Qm,.«x - j) sinh AU +! m)
J~ -00

= [{ (2/,1.) sinh! A}m-3cosh P] sinh Ax.

(1.24 )

Proof For m = 2, by an elementary computation we have the above
relations. Multiplying the first relation by 2 sinh! A, we have for m ~ 3

00

L Q;"+ 1,.«X - j) sinh AU + !(m + 1)}
J~ -00

= {(2/A) sinh! A} m- 32 sinh! Acos! Acosh Ax (1.25)

where
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Integration of the above equation from 0 to x yields

00

L Qm+u(x-j)sinh)"{j+!(m+l)}+c
j -;:-: 00

= {(2/}") sinh! A} m 2cosh! Asinh ;"x.

127

(1.26)

Here we shall prove the above constant c to be zero. By Theorem 1, we
obtain

where

ex
Qm+ 1,;.(X) = I Qm __ l(t)l/!(x-t)dt

'x 2

Qm 1(x) = (X*X* ... *X)(X),-----m-l

(1.27)

i.e., Qm 1 is the polynomial B-spline of degree m - 2, and l/!(x) =
(¢;;, *¢; ;j(x). From (1.27), by a simple calculation we get

(D 2
- )"2) Qm+ I,;,(X) = Qm-l,;JX) - 2 cosh AQm u(x - 1)

+Qm_l,;,(x-2) (m~3). (1.28)

Operating the differential operator (D 2
- )"

2) to the both sides of (1.26), we
have

00

L [sinh )"{(j + !(m + 1)}
j~ -00

- 2 cosh Asinh ;0 {(j - 1 +!(m + 1) }

+ sinh )0 {(j - 2 + !(m + 1)}]

xQm 1,;,(x-j)-d2 =O. (1.29)

Since the coefficient of Qm l,;,(X - j) is identically zero, we have the desired
second relation with m replaced by m + 1. Similarly we have the first
relation with m + 1 from the second with m,
For Qm+ 1,1.(X), we have

00

L Qm;I,;,(X-j)= {sin(!)0)/(!A)}2
j~ 00

from which follows

(m~2) (1.30)

1ESpan{Qm+l,;.(X-j)}J",;, 00 (m~2)

for ;"i=2kn (k= 1, 2, ... ). (1.31)
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In addition, as in the proof of Theorem 3 we have

2 m - 2 S {Q- ( ') } roX, X ,..., X E pan m+l,J. x- ] j~-ro

for A -=1= 2kn

For Qm,J.(x) (m ~ 2), we have

(k = 1, 2,... ), (1.32 )

ro

L Qm,J.(X-j)cosA(j+~m)
j~ -ro

ro

L Qm,J.(x-j)sinA(j+~m)
j= ~OO

= [{ (2IA) sin !A }m-3cos ~ A] sin Ax

from which follows

(1.33 )

cos Ax and sin Ax E Span {Qm,J.(x - j) L~ -ro

forA -=1= kn (k = 1, 2,.. ,).

(m~2)

(1.34)

2. AN ApPLICATION OF A HYPERBOLIC SPLINE OF DEGREE 4
TO A NUMERICAL SOLUTION OF A SIMPLE PERTURBATION PROBLEM

We are concerned with numerical solution of a simple singular pertur
bation problem:

ey"(x) - y(x) = g(x) (0:::;; x:::;; 1)

y(O)=a, y(I)=P

(2.1 )

(2.2)

with O<e~1.

Miller has proposed and proved the convergence, uniformly in e, of the
difference scheme:

(2.4 )Yo = a, y,,=p

(l:::;;j:::;;n-l) (2.3)

with A=hlj"i.

where for a natural number n, h = lin and gj = g(jh).
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Now, by making use of the hyperbolic B-spline QS,J, of degree 4 we con
sider a spline function of the form

n 1

s(x) = L 'XjQs,;.(x/h - j),
j= 4

;, =h/.j; (2,5)

with undetermined coefficients ('X_4' 'X_ 3,..., 'Xn d. The above s(x) will be
an approximate solution if it satisfies

So = (X,

(1~j~n-1)

Sn = fi·

(2.6)

(2.7)

(2.8 )

In order to transform the above collocation method (2.6)--(2.7) to a dif
ference method, we shall require the following consistency relation
obtained by use of the similar technique for the polynomial spline:

(#) h 2(a2,4 Sj 1 +a2,3 Sj+a2,2 Sj-i-1 +S2,lSj~2)

where Uk,j = Q~~l(j) (l ~ k ~ 3),
Since Q~~l(j) = m~1(5 - j) (k = 0,2), the above relation (#) at con

secutive four mesh points is reduced to a short term relation at consecutive
three mesh points, by making an alternating sum of (#) obtained by
writing down (#), subtracting (#) with j replaced by j + 1, adding (#)
with j replaced by j +2 and so on, That is,

h 2,u(),)(Sj11- 2sj+Sj d

where

(
')= Ji?(cosh;,-l) 12

,ul. h' 1-2>'cos I, -- 1 - :;: I, -

(2.9)

(2.1 0)

By means of this short term consistency relation, the collocation method
(2.6)-(2.7) is equivalent to a difference method:

=gj-l+(,u-2)gj+gj-l (1~j~n--l)

So='X, sn=fi with ,u=,u(h/j';),

(2.11 )

(2.12 )
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TABLE (8= 10-4)

Observed Errors at Mesh Points in Collocation Method (2.11)-(2.12)
and Miller's Difference Method (2.3)-(2.4)

Method Collocation Difference

x\h 1/20 1/40 1/20 1/40

0.05 0.922-5* 0.955-6 -0.301-1 -0.840-2
0.1 0.790-5 0.818-6 -0.132-2 -0.181-3
0.2 0.302-5 0.313-6 -0.310-5 -0.120-5
0.3 -0.3.2-5 -0.313-6 -0.498-5 -0.125-5
0.4 -0.790-5 -0.818-6 -0.130-4 -0.367-5
0.5 -0.977-5 -0.101-5 -0.161-4 -0.404-5

* We denote 0.922 x 10- 5 by 0.922-5, and the errors mean (exact values) - (approximate
values).

The solution of (2.1 )-(2.2) would be dominated by terms of e±x/,fi, and
so in order to derive a lumped mass system of the above difference scheme
we let

(Sj+ 1 + gj+ d + (Sj_l + gj- d
~ (eh/,fi + e-h/,fi) x (Sj + gj) = 2 cosh(h/~ )(Sj + g). (2.13)

Since

{
Sinh(! ,i)}2

J1(h/~)-2+2cosh(h/~)= !l J1(h/~), (2.14)

we have a lumped mass system of (2.6)-(2.7) which is identical with the
above Miller's difference scheme (2.3 )-(2.4).

Now we consider an application of the difference scheme (2.11 )-(2.12) to
a simple two point boundary value problem:

y(O) = y(l) = O. (2.15)

The exact solution is given by

y(x) = exp((x-l)/~) + exp( -x/~)
1 +exp( -1/fi)
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