On Exponential Splines

Manabu Sakai and Riay A. Usmani
Department of Mathematics, Faculty of Science, Kagoshima University, Kagoshima 890, Japan
Communicated by R. Rojanic

Received August 6, 1984; revised December 24, 1984

1. Introduction and Description of B-Splines

Among the various classes of splines, the polynomial spline has been received the greatest attention primarly because it admits a basis of B splines which can be accurately and efficiently computed. Recently it has been shown that trigonometric and hyperbolic splines also admit B-spline bases ($[1,2]$).
The object of the present paper is to give B-spline bases for hyperbolic and trigonometric splines which are little different from the hyperbolic and trigonometric oncs in [1,2]. Throughout this paper, we assume that m is a natural number and λ is a positive parameter. First we consider a sequence $\left\{d_{m, j}\right\}$ defined by

$$
\begin{align*}
d_{m, j} & =d_{m-1, j}+d_{m-1, j \cdot 1}, \quad d_{m, 0}=d_{m, m}=1 \quad(m \geqslant 3) \\
d_{m, j} & =0 \quad(j \leqslant-1 \text { and } j \geqslant m+1) \tag{1.1}\\
d_{2,0} & =1, \quad d_{2,1}=2 \cosh \lambda, \quad d_{2,2}=1 .
\end{align*}
$$

By a simple calculation, we have

$$
\begin{equation*}
\lim _{i \rightarrow 0} d_{m, j}=\binom{m}{j} . \tag{1.2}
\end{equation*}
$$

Now, by making use of the constant $d_{m, j}$, we may define a hyperbolic B spline $Q_{m+1, \lambda}$ of degree m :
for m odd:

$$
\begin{align*}
Q_{m+1, \lambda}(x)= & \sum_{j=0}^{m+1}(-1)^{j} d_{m+1, j}\left(1 / \lambda^{m}\right)\left[\sinh \lambda(x-j)_{।}\right. \\
& \left.\cdots \lambda(x-j)_{1} \cdots \cdots \quad \frac{\left\{\hat{\lambda}(x-j)_{+}\right\}^{m-2}}{(m-2)!}\right] ; \tag{1.3}
\end{align*}
$$

for m even:

$$
\begin{align*}
Q_{m+1, \lambda}(x)= & \sum_{j=0}^{m+1}(-1)^{j} d_{m+1, j}\left(1 / \lambda^{m}\right)\left[\cosh \lambda(x-j)_{+}\right. \\
& \left.-1-\cdots-\frac{\left\{\hat{\lambda}(x-j)_{+}\right\}^{m-2}}{(m-2)!}\right] \tag{1.4}
\end{align*}
$$

Here we shall prove that the hyperbolic B-spline $Q_{m+1, \lambda}$ is characterized by a convolution process of an exponential function ϕ_{λ} and a characteristic function χ on $[0,1)$, where

$$
\begin{array}{cllll}
\phi_{\lambda}(x)=e^{\lambda x} & (0 \leqslant x<1) & \text { and } & 0 & \text { (otherwise) } \tag{1.5}\\
\chi(x)=1 & (0 \leqslant x<1) & \text { and } & 0 & \text { (otherwise). }
\end{array}
$$

Theorem 1.

$$
\begin{equation*}
Q_{m+1, \lambda}(x)=\underbrace{\left.\left(\chi^{*} \chi^{*} \ldots * \chi^{*} \phi_{\lambda}^{*} \phi,\right)(x),(x),{ }^{*}\right)}_{m-1} \tag{1.6}
\end{equation*}
$$

where * means the convolution of two functions, i.e.,

$$
\left(f^{*} g\right)(x)=\int_{-\infty}^{\infty} f(t) g(x-t) d t
$$

Proof. By the definition of $d_{m, j}$, we have

$$
\begin{equation*}
Q_{m+1, \lambda}^{\prime}(x)=Q_{m, \lambda}(x)-Q_{m, \lambda}(x-1) \tag{1.7}
\end{equation*}
$$

Since $Q_{m+1, \lambda}(0)=0$, from above we obtain

$$
\begin{align*}
Q_{m+1, \lambda}(x) & =\int_{x-1}^{x} Q_{m, \lambda}(t) d t=\int_{0}^{1} \chi(t) Q_{m, \lambda}(x-t) d t \tag{1.8}\\
& \left.=\left(\chi^{*} Q_{m, \lambda}\right)(x)=\cdots=\frac{\left(\chi^{*} \chi^{*} \cdots * \chi^{*}\right.}{m-1} Q_{2, \lambda}\right)(x)
\end{align*}
$$

By a simple calculation, we have

$$
\begin{align*}
\lambda Q_{2, \lambda}(x)= & \sinh \lambda x_{+}-\cosh \hat{\lambda} \sinh \lambda(x-1)_{+} \\
& +\sinh \lambda(x-2)_{+} \\
& = \begin{cases}\sinh \lambda x & (0 \leqslant x \leqslant 1) \\
\sinh \lambda(2-x) & (1 \leqslant x \leqslant 2)\end{cases} \\
= & \lambda\left(\phi_{\lambda}^{*} \phi_{-i}\right)(x) \tag{1.9}
\end{align*}
$$

This completes the proof of Theorem 1.

Next we shall give a trigonometric B-spline $\widetilde{Q}_{m+1, \lambda}$ by replacing the parameter λ in the definition of the hyperbolic B-spline $Q_{m+1, \lambda}$ by $i \lambda$ ($i=$ $\sqrt{-1}$):
for m odd:

$$
\begin{align*}
\tilde{Q}_{m+1, \lambda}(x)= & (-1)^{(1 / 2)(m-1)} \sum_{j=0}^{m+1}(-1)^{j} \tilde{d}_{m+1 . j}\left(1 / \lambda^{m}\right)\left[\sin \lambda(x-j)_{+}\right. \\
& \left.-\lambda(x-j)_{+}-\cdots-(-1)^{(1 / 2)(m+1)} \frac{\left\{\lambda(x-j)_{+}\right\}^{m-2}}{(m-2)!}\right] ; \tag{1.10}
\end{align*}
$$

for m even:

$$
\begin{align*}
\tilde{Q}_{m+1, \lambda}(x)= & (-1)^{(1 / 2) m} \sum_{j=0}^{m+1}(-1)^{j} \tilde{d}_{m+1, j}\left(1 / \lambda^{m}\right)\left[\cos \lambda(x-j)_{+}\right. \\
& \left.-1-\cdots-(-1)^{(1 / 2)(m+2)} \frac{\left\{\lambda(x-j)_{+}\right\}^{m-2}}{(m-2)!}\right] \tag{1.11}
\end{align*}
$$

where $\left\{\tilde{d}_{m, j}\right\}$ is defined by the same recursion formula (1.1) with $2 \cos \lambda$ in the definition of $\tilde{d}_{2,2}$.
Similarly as in the hyperbolic B-spline, we have:

Theorem 2.
where

$$
\begin{align*}
\left(\phi_{i \lambda}^{*} \phi_{-i \lambda}\right)(x) & =\sin \lambda x / \lambda & & (0 \leqslant x \leqslant 1) \tag{1.13}\\
& =\sin \lambda(2-x) / \lambda & & (1 \leqslant x \leqslant 2) .
\end{align*}
$$

By making use of Theorems 1 and 2 , we may easily have the properties of these hyperbolic and trigonometric B-splines similar to those of the polynomial ones ([3]). In addition, we have the following theorems that imply $1, x, \ldots, x^{m-2}, \cosh \lambda x$ and $\sinh \lambda x \in \operatorname{Span}\left\{Q_{m+1, \lambda}(x-j)\right\}_{j=-\infty}^{\infty}$.

Theorem 3. For $m \geqslant 2$,

$$
\begin{equation*}
1, x, \ldots, x^{m-2} \in \operatorname{Span}\left\{Q_{m+1, \lambda}(x-j)\right\}_{j=-\infty}^{\infty} . \tag{1.14}
\end{equation*}
$$

Proof. By the definition of the characteristic function, we have

$$
\begin{equation*}
\sum_{j=-\infty}^{\infty} \chi(x-j)=1 \tag{1.15}
\end{equation*}
$$

A successive convolution of this partition of unity and $\chi, \ldots, \chi, \phi_{i}$ and $\phi_{-\lambda}$ yields

$$
\begin{align*}
\sum_{j=-\infty}^{\infty} Q_{m+1,2}(x-j) & =\left(1 * \chi_{m * 2}^{*} \chi^{*} \cdots * \chi^{*} \phi_{\lambda} * \phi_{\lambda}\right)(x) \\
& =\left\{\sinh \left(\frac{1}{2} \lambda\right) /\left(\frac{1}{2} \lambda\right)\right\}^{2} \quad(m \geqslant 2) . \tag{1.16}
\end{align*}
$$

In addition, since $j-(j-1)=1$, from above we have

$$
\begin{align*}
& \left\{\sinh \left(\frac{1}{2} \lambda\right) /\left(\frac{1}{2} \lambda\right)\right\}^{2} \\
& \quad=\sum_{j=-\infty}^{\infty} j Q_{m+1, \lambda}(x-j)-\sum_{j-\infty}^{\infty}(j-1) Q_{m+1, \lambda}(x-j) \\
& \quad=\sum_{j=-\infty}^{\infty} j\left\{Q_{m+1, \lambda}(x-j)-Q_{m+1, \lambda}(x-j-1)\right\} \\
& \quad=\sum_{j=-\infty}^{\infty} j Q_{m+2, \lambda}^{\prime}(x-j) . \tag{1.17}
\end{align*}
$$

Integration of the above equation from 0 to x gives

$$
\begin{align*}
& \sum_{j=i x}^{\infty} j Q_{m+2, \lambda}(x-j)-\sum_{j=-\infty}^{\infty} j Q_{m+2 . \lambda}(-j) \\
& \left.\quad=\left\{\sinh \left(\frac{1}{2} i\right) /\left(\frac{1}{2} \hat{\lambda}\right)\right)\right\}^{2} x \tag{1.18}
\end{align*}
$$

where

$$
\begin{align*}
\sum_{j=\cdot \infty}^{\infty} & Q_{m+2, \lambda}(-j) \\
& =-\left\{Q_{m+2, \lambda}(1)+2 Q_{m+2, \lambda}(2)+\cdots+(m+1) Q_{m+2, \lambda}(m+1)\right\} \\
& =-\left(\frac{1}{2} m+1\right)\left\{\sinh \left(\frac{1}{2} \lambda\right) /\left(\frac{1}{2} \lambda\right)\right\}^{2} . \tag{1.19}
\end{align*}
$$

During the above computation, we used

$$
\begin{align*}
Q_{m+2, \lambda}(j) & =Q_{m+2, \lambda}(m+2-j) \\
\sum_{j=-\infty}^{\infty} Q_{m+2, \lambda}(x-j) & =\left\{\sinh \left(\frac{1}{2} \hat{\lambda}\right) /\left(\frac{1}{2} \hat{\lambda}\right)\right\}^{2} . \tag{1.20}
\end{align*}
$$

Thus we have for $m \geqslant 2$

$$
\begin{equation*}
\sum_{j=-\infty}^{\infty}\left(j+\frac{1}{2} m+1\right) Q_{m+2, \lambda}(x-j)=\left\{\sinh \left(\frac{1}{2} \lambda\right) /\left(\frac{1}{2} \lambda\right)\right\}^{2} x \tag{1.21}
\end{equation*}
$$

i.e.,

$$
\begin{equation*}
x \in \operatorname{Span}\left\{Q_{m+1, \lambda}(x-j)\right\}_{j=-\infty}^{\infty} \quad(\text { for } m \geqslant 3) \tag{1.22}
\end{equation*}
$$

By making use of a simple identity:

$$
\begin{equation*}
k \prod_{p=0}^{k-2}(j+p)=\prod_{p=0}^{k-1}(j+p)-\prod_{p=0}^{k-1}(j+p-1) \tag{1.23}
\end{equation*}
$$

i.e.,

$$
\begin{aligned}
2 j= & (j+1) j-j(j-1) \\
3(j+1) j= & (j+2)(j+1) j-(j+1) j(j-1) \\
& \cdots
\end{aligned}
$$

inductively we have the desired result.
THEOREM 4. For $m \geqslant 2$,

$$
\begin{align*}
& \sum_{j=-\infty}^{\infty} Q_{m, \lambda}(x-j) \cosh \lambda\left(j+\frac{1}{2} m\right) \\
& \quad=\left[\left\{(2 / \lambda) \sinh \frac{1}{2} \lambda\right\}^{m-3} \cosh \frac{1}{2} \lambda\right] \cosh \lambda x \\
& \sum_{j=-\infty}^{\infty} Q_{m, \lambda}(x-j) \sinh \lambda\left(j+\frac{1}{2} m\right) \tag{1.24}\\
& \quad=\left[\left\{(2 / \lambda) \sinh \frac{1}{2} \lambda\right\}^{m-3} \cosh \frac{1}{2} \lambda\right] \sinh \lambda x .
\end{align*}
$$

Proof. For $m=2$, by an elementary computation we have the above relations. Multiplying the first relation by $2 \sinh \frac{1}{2} \lambda$, we have for $m \geqslant 3$

$$
\begin{align*}
& \sum_{j=-\infty}^{\infty} Q_{m+1, \lambda}^{\prime}(x-j) \sinh \lambda\left\{j+\frac{1}{2}(m+1)\right\} \\
& \quad=\left\{(2 / \lambda) \sinh \frac{1}{2} \lambda\right\}^{m-3} 2 \sinh \frac{1}{2} \lambda \cos \frac{1}{2} \lambda \cosh \lambda x \tag{1.25}
\end{align*}
$$

where

$$
Q_{m+1, \lambda}^{\prime}(x)=Q_{m, \lambda}(x)-Q_{m, \lambda}(x-1)
$$

Integration of the above equation from 0 to x yields

$$
\begin{gather*}
\sum_{j=-\infty}^{\infty} Q_{m+1, \lambda}(x-j) \sinh \hat{\lambda}\left\{j+\frac{1}{2}(m+1)\right\}+c \\
=\left\{(2 / \lambda) \sinh \frac{1}{2} \hat{\lambda}\right\}^{m \cdots 2} \cosh \frac{1}{2} \hat{\lambda} \sinh \hat{\lambda} x \tag{1.26}
\end{gather*}
$$

Here we shall prove the above constant c to be zero. By Theorem 1, we obtain

$$
\begin{equation*}
Q_{m+1, \lambda}(x)=\int_{x, 2}^{x} Q_{m-1}(t) \psi(x-t) d t \tag{1.27}
\end{equation*}
$$

where

$$
Q_{m \cdots 1}(x)=\underbrace{\left(\chi^{*} \chi^{*} \ldots * \chi\right)}_{m-1}(x),
$$

i.e., $Q_{m .1}$ is the polynomial B-spline of degree $m-2$, and $\psi(x)=$ $\left(\phi_{\lambda} * \phi_{2}\right)(x)$. From (1.27), by a simple calculation we get

$$
\begin{align*}
\left(D^{2}-\lambda^{2}\right) Q_{m+1, \lambda}(x)= & Q_{m-1, \lambda}(x)-2 \cosh \hat{\lambda} Q_{m \quad 1, \lambda}(x-1) \\
& +Q_{m-1, \lambda}(x-2) \quad(m \geqslant 3) \tag{1.28}
\end{align*}
$$

Operating the differential operator $\left(D^{2}-\lambda^{2}\right)$ to the both sides of (1.26), we have

$$
\begin{align*}
\sum_{j=-\infty}^{\infty} & {\left[\operatorname { s i n h } \lambda \left\{\left(j+\frac{1}{2}(m+1)\right\}\right.\right.} \\
& -2 \cosh \lambda \sinh \lambda\left\{\left(j-1+\frac{1}{2}(m+1)\right\}\right. \\
& +\sinh \lambda\left\{\left(j-2+\frac{1}{2}(m+1)\right\}\right] \\
& \times Q_{m \cdot 1, \lambda}(x-j)-c \lambda^{2}=0 . \tag{1.29}
\end{align*}
$$

Since the coefficient of $Q_{m \cdot 1, \lambda}(x-j)$ is identically zero, we have the desired second relation with m replaced by $m+1$. Similarly we have the first relation with $m+1$ from the second with m.
For $\widetilde{Q}_{m+1, \lambda}(x)$, we have

$$
\begin{equation*}
\sum_{j==\infty}^{\infty} \tilde{Q}_{m+1, \lambda}(x-j)=\left\{\sin \left(\frac{1}{2} \hat{\lambda}\right) /\left(\frac{1}{2} \hat{\lambda}\right)\right\}^{2} \quad(m \geqslant 2) \tag{1.30}
\end{equation*}
$$

from which follows

$$
\begin{align*}
& 1 \in \operatorname{Span}\left\{\tilde{Q}_{m+1, \lambda}(x-j)\right\}_{j=\cdots \infty}^{\infty} \quad(m \geqslant 2) \\
& \text { for } \quad \lambda \neq 2 k \pi \quad(k=1,2, \ldots) . \tag{1.31}
\end{align*}
$$

In addition, as in the proof of Theorem 3 we have

$$
\begin{align*}
& x, x^{2}, \ldots, x^{m-2} \in \operatorname{Span}\left\{\widetilde{Q}_{m+1, \lambda}(x-j)\right\}_{j=-\infty}^{\infty} \\
& \quad \text { for } \lambda \neq 2 k \pi \quad(k=1,2, \ldots) . \tag{1.32}
\end{align*}
$$

For $\widetilde{Q}_{m, \lambda}(x)(m \geqslant 2)$, we have

$$
\begin{align*}
& \sum_{j=-\infty}^{\infty} \tilde{Q}_{m, \lambda}(x-j) \cos \lambda\left(j+\frac{1}{2} m\right) \\
& \quad=\left[\left\{(2 / \lambda) \sin \frac{1}{2} \lambda\right\}^{m-3} \cos \frac{1}{2} \lambda\right] \cos \lambda x \\
& \sum_{j=-\infty}^{\infty} \tilde{Q}_{m, \lambda}(x-j) \sin \lambda\left(j+\frac{1}{2} m\right) \tag{1.33}\\
& \quad=\left[\left\{(2 / \lambda) \sin \frac{1}{2} \lambda\right\}^{m-3} \cos \frac{1}{2} \lambda\right] \sin \lambda x
\end{align*}
$$

from which follows

$$
\begin{align*}
& \cos \lambda x \text { and } \sin \lambda x \in \operatorname{Span}\left\{\widetilde{Q}_{m, \lambda}(x-j)\right\}_{j=-\infty}^{\infty} \quad(m \geqslant 2) \\
& \quad \text { for } \lambda \neq k \pi \quad(k=1,2, \ldots) \tag{1.34}
\end{align*}
$$

2. An Application of a Hyperbolic Spline of Degree 4

 to a Numerical Solution of a Simple Perturbation ProblemWe are concerned with numerical solution of a simple singular perturbation problem:

$$
\begin{gather*}
\varepsilon y^{\prime \prime}(x)-y(x)=g(x) \quad(0 \leqslant x \leqslant 1) \tag{2.1}\\
y(0)=\alpha, \quad y(1)=\beta \tag{2.2}
\end{gather*}
$$

with $0<\varepsilon \ll 1$.
Miller has proposed and proved the convergence, uniformly in ε, of the difference scheme:

$$
\begin{gather*}
\varepsilon\left\{\frac{\frac{1}{2} \lambda}{\sinh \left(\frac{1}{2} \lambda\right)}\right\}^{2} \frac{\left(y_{j+1}-2 y_{j}+y_{j-1}\right)}{h^{2}}-y_{j}=g_{j} \\
(1 \leqslant j \leqslant n-1) \tag{2.3}\\
y_{0}=\alpha, \quad y_{n}=\beta \quad \text { with } \quad \lambda=h / \sqrt{\varepsilon} \tag{2.4}
\end{gather*}
$$

where for a natural number $n, h=1 / n$ and $g_{j}=g(j h)$.

Now, by making use of the hyperbolic B-spline $Q_{5, \lambda}$ of degree 4 we consider a spline function of the form

$$
\begin{equation*}
s(x)=\sum_{j=1}^{n \cdot 1} x_{j} Q_{5, \lambda}(x / h-j), \quad \hat{\lambda}=h / \sqrt{\varepsilon} \tag{2.5}
\end{equation*}
$$

with undetermined coefficients $\left(\alpha_{-4}, \alpha_{-\ldots 3}, \ldots, \alpha_{n-1}\right)$. The above $s(x)$ will be an approximate solution if it satisfies

$$
\begin{align*}
\varepsilon s_{j}^{\prime \prime}-s_{j} & =g_{j} & & (1 \leqslant j \leqslant n-1) \tag{2.6}\\
s_{0} & =\alpha, & & s_{n}=\beta . \tag{2.7}
\end{align*}
$$

In order to transform the above collocation method (2.6) (2.7) to a difference method, we shall require the following consistency relation obtained by use of the similar technique for the polynomial spline:

$$
\text { (\#) } \begin{align*}
& h^{\cdot 2}\left(a_{2,4} s_{j \ldots 1}+a_{2,3} s_{j}+a_{2,2} s_{j \div 1}+s_{2,1} s_{j+2}\right) \\
& =\left(a_{0,4} s_{j \cdots 1}^{\prime \prime}+a_{0,3} s_{j}^{\prime \prime}+a_{0,2} s_{j+1}^{\prime \prime}+a_{0,1} s_{j+2}^{\prime \prime}\right) \tag{2.8}
\end{align*}
$$

where $a_{k, j}=Q_{5, j}^{(k)}(j)(1 \leqslant k \leqslant 3)$.
Since $Q_{5, \lambda}^{(k)}(j)=Q_{5, \lambda}^{(k)}(5-j)(k=0,2)$, the above relation (\#) at consecutive four mesh points is reduced to a short term relation at consecutive three mesh points, by making an alternating sum of (\#) obtained by writing down (\#), subtracting (\#) with j replaced by $j+1$, adding (\#) with j replaced by $j+2$ and so on. That is,

$$
\begin{align*}
& h^{2} \mu(\hat{\lambda})\left(s_{j+1}-2 s_{j}+s_{j 1}\right) \\
& \quad=s_{j+1}^{\prime \prime}+\{\mu(\hat{\lambda})-2\} s_{j}^{\prime \prime}+s_{j=1}^{\prime \prime} \tag{2.9}
\end{align*}
$$

where

$$
\begin{equation*}
\mu(\lambda)=\frac{\lambda^{2}(\cosh \hat{\lambda}-1)}{\cosh \hat{\lambda}-1-\frac{1}{2} \lambda^{2}}>12 \tag{2.10}
\end{equation*}
$$

By means of this short term consistency relation, the collocation method (2.6)-(2.7) is equivalent to a difference method:

$$
\begin{gather*}
\varepsilon \mu \frac{\left(s_{j+1}-2 s_{j}+s_{j-1}\right)}{h^{2}}-\left\{s_{j+1}+(\mu-2) s_{j}+s_{j, 1}\right\} \\
=g_{j-1}+(\mu-2) g_{j}+g_{j-1} \quad(1 \leqslant j \leqslant n-1) \tag{2.11}\\
s_{0}=\alpha, \quad s_{n}=\beta \quad \text { with } \quad \mu=\mu(h / \sqrt{\varepsilon}) \tag{2.12}
\end{gather*}
$$

$\operatorname{TABLE}\left(\varepsilon=10^{-4}\right)$
Observed Errors at Mesh Points in Collocation Method (2.11)-(2.12)
and Miller's Difference Method (2.3)-(2.4)

Method	Collocation		Difference	
$x \backslash h$	1/20	1/40	1/20	1/40
0.05	0.922-5*	0.955-6	-0.301-1	-0.840-2
0.1	0.790-5	0.818-6	-0.132-2	-0.181-3
0.2	0.302-5	0.313-6	-0.310-5	-0.120-5
0.3	-0.3.2-5	-0.313-6	-0.498-5	-0.125-5
0.4	-0.790-5	-0.818-6	-0.130-4	-0.367-5
0.5	$-0.977-5$	-0.101-5	-0.161-4	-0.404-5

* We denote 0.922×10^{-5} by $0.922-5$, and the errors mean (exact values) - (approximate values).

The solution of (2.1)-(2.2) would be dominated by terms of $e^{ \pm x / \sqrt{\varepsilon}}$, and so in order to derive a lumped mass system of the above difference scheme we let

$$
\begin{align*}
& \left(s_{j+1}+g_{j+1}\right)+\left(s_{j-1}+g_{j-1}\right) \\
& \quad \cong\left(e^{h / \sqrt{\varepsilon}}+e^{-h / \sqrt{\varepsilon}}\right) \times\left(s_{j}+g_{j}\right)=2 \cosh (h / \sqrt{\varepsilon})\left(s_{j}+g_{j}\right) . \tag{2.13}
\end{align*}
$$

Since

$$
\begin{equation*}
\mu(h / \sqrt{\varepsilon})-2+2 \cosh (h / \sqrt{\varepsilon})=\left\{\frac{\sinh \left(\frac{1}{2} \lambda\right)}{\frac{1}{2} \lambda}\right\}^{2} \mu(h / \sqrt{\varepsilon}), \tag{2.14}
\end{equation*}
$$

we have a lumped mass system of (2.6)-(2.7) which is identical with the above Miller's difference scheme (2.3)-(2.4).
Now we consider an application of the difference scheme (2.11)-(2.12) to a simple two point boundary value problem:

$$
\begin{equation*}
\varepsilon y^{\prime \prime}-y=\cos ^{2} \pi x+2 \pi^{2} \varepsilon \cos 2 \pi x, \quad y(0)=y(1)=0 . \tag{2.15}
\end{equation*}
$$

The exact solution is given by

$$
y(x)=\frac{\exp ((x-1) / \sqrt{\varepsilon})+\exp (-x / \sqrt{\varepsilon})}{1+\exp (-1 / \sqrt{\varepsilon})}-\cos ^{2} \pi x .
$$

References

1. T. Lyche and R. Winther, A stable recurrence relation for trigonometric B-splines, J. Approx. Theory 25 (1979), 266-279.
2. L. L. Schlmakir, On hyperbolic splines, J. Approx. Theory 38 (1983), 144-166.
3. L. L. Schumaker, "Spline Functions: Basic Theory," Wiley, New York, 1981.
4. J. J. Miller, On the convergence, uniformly in ε, of difference schemes for a two point boundary singular perturbation problem, in "Proceedings, Conf., Nijmegen," Academic Press, New York, 1979.
5. J. Stofr and R. Bulirsch, "Introduction to Numerical Analysis," Springer-Verlag, Berlin/ New York/Heidelberg, 1979.
